
Lubna Ahmed

1

Introduction

Four steps:

 Problem analysis and specification

 Algorithm development

 Program coding

 Program execution and testing

2

Top down process

Top down design is the process of starting with a large

task and breaking it down into smaller, more easily

understandable pieces that perform a portion of desired

task.

3

Top down process cont’d

Steps involve in solving any problem:-

1.Clearly state the problem that you are trying to solve.

2.Define the inputs required by the program and the
outputs to be produced by the program.

3.Design the algorithm that you intend to implement in the
program.

4.Turn the algorithm into Fortran statements.

5.Test the resulting Fortran program.

4

Top down process cont’d

5

1. Clear Statement of Problem

Programs are usually written to fill some perceived need, but that need may not be

articulated clearly by the person requesting the program.

2. Define Input and Output of a Problem

Review the problem in order to determine the

Input Information given

Output Information to be produced to solve the problem

Top down process cont’d

6

Example:

John is a nuclear physicist and is conducting research with the radio-active element

polonium. The half-life of polonium is 140days. John would like to know how much

polonium will remain after running his experiment for 180 days if 10 milligrams are

present initially.

Input Output

Initial amount: 10 mg

Half life: 140 days

Time Period : 180 days

Amount remaining

Top down process cont’d

7

3. Algorithm Development

Algorithm is a step-by-step procedure for finding the solution to a problem. In this

stage, designer divides the problems into subtasks. This process is called

decomposition. If the subtasks are themselves large, the designer can break them

up into even smaller sub-subtasks. This process continues until each piece does a

simple, clearly understandable job.

Each Subtask is then refined through Stepwise refinement. Stepwise refinement is

usually done by Pseudo code.

4. Algorithm to Fortran Statement

If the decomposition and refinement process was carried out properly, this step will

be very simple. All the programmer will have to do is to replace pseudo code with the

corresponding Fortran statements on a one-for-one basis.

Top down process cont’d

8

5. Test the Program

 Test the component of the program.

 Test the program for all legal input data set.

 Program involving different branches must be tested for each individual

branches.

 Release for use.

Top down process cont’d

9

Algorithm Development

 Once the problem has been specified, a procedure to

produce the required output from the given input must be

designed.

 Such a procedure is called algorithm.

 The relationships between the inputs and outputs are

necessary in this step.

 Algorithm should be a Pseudocode description of the

actual code to be written.

 Some programmers also use graphical representation of

algorithms in addition to or in place of pseudocode

description.

 Most common one is the flowchart.

10

Pseudo code &Flowchart

11

The constructs used to build algorithms can be described in two different ways:

1. Pseudo Code

2. Flowchart

Pseudo Code:

 Pseudo code is a kind of structured English for describing algorithms. It is a

hybrid mixture of English and Fortran.

 It allows the designer to focus on the logic of the algorithm without being

distracted by details of language syntax.

Pseudo code &Flowchart cont’d

12

Example:

Pseudo Code for Fahrenheit to Kelvin conversion

1.Prompt user to enter temperature in degrees Fahrenheit

2.Read temperature in degrees Fahrenheit (temp_f)

3.temp_k in Kelvin (5./9.)*(temp_f-32)+273.15

4.Write temperature in degree Fahrenheit

Pseudo code &Flowchart cont’d

Flowchart is a type of diagram that represents an

algorithm or process, showing the steps as boxes of

various kinds, and their order by connecting these with

arrows. This diagrammatic representation can give a

step-by-step solution to a given problem.

13

Pseudo code &Flowchart cont’d

14

Pseudo code &Flowchart cont’d

15

Example:

Flowchart of converting

temperature from

degree Fahrenheit to

Rankin scale

This is an example of

SEQUENTIAL

STRUCTURE

Pseudo code &Flowchart cont’d

16

Example:

Flowchart to determine

the difference between

two real numbers

This is an example of

SELECTIVE

STRUCTURE

Pseudo code &Flowchart cont’d

17

Example:

Flowchart to determine

factorial of any number

This is an example of

REPETITIVE/

ITERATIVE

STRUCTURE

Program Coding

If the problem has been carefully analyzed and if complete

and clear algorithms have been developed, the third step of

program coding is usually straightforward

18

Program Coding cont’d

19

Simple Structure of Fortran Programming

Program name.

Opening documentation

Declare variables and structures.

Assign values to variables.

Process data.

Print results.

End program.

Heading

Specification Part

Execution Part

Program Coding cont’d

20

PROGRAM DECAY

IMPLICIT NONE

!This program calculates the amount of a radioactive

!substance that remains after a specific time, given

!an initial amount, and its half-life. Variables used

!are:

!INIT : initial amount of substance

!HFLIFE : half-life of the substance

!TIME : time at which the amount remaining

! is calculated

!RESID : amount remaining

REAL INIT, HFLIFE, TIME, RESID

PRINT*,’ENTER INITIAL AMOUNT, HALF-LIFE, AND TIME’

READ*,INIT,HFLIFE,TIME

RESID=INIT*0.5**(TIME/HFLIFE)

PRINT*,’AMOUNT REMAINING=’, RESID

END

Program Testing

Errors in Program
 Syntax error or compile-time error

 Run-time error

 Logical error

Syntax Error
 Incorrect system commands causes syntax errors.

 Errors in the program’s syntax, such as

 Incorrect punctuations, or

 Misspelled key words will be detected during compilation.

Example:

21

PRINT*, ‘AMOUNT REMAINING=.RESID

Program Testing cont’d

 Runtime Error

Errors that may not be detected until execution of the program fall in this

category.

These errors must be corrected by replacing the erroneous statements with

the correct ones.

Example:

22

An attempt to divide by zero in an arithmetic expression

Program Testing cont’d

23

 Logical Error :

Logical errors arise in the design of the algorithm or in the coding of the

program that implements the algorithm.

Example:

If the statement

RESID = INIT*0.5**(TIME/HFLIFE)

was mistakenly entered as

RESID = INIT*0.5*(TIME/HFLIFE)

no error would occur during the compilation or execution of the program. But

the result of the program would be Incorrect

Program Testing cont’d

24

 Rounding Error

At times a program will give numerical answers to a problem which appear in

explicably different from what we know to be the correct mathematical solution. This

can be due to rounding error.

Example:

Run the following program extract:

X = 0.1

DO

X = X + 0.001

PRINT*, X

IF (X == 0.2) EXIT

END DO

This program never stops, X never reaches to 0.2 exactly. X misses the value of 0.2
by about 10-9.

Program Testing cont’d

25

 Thus, “it is important that the user run a program several

times with input data for which the correct results are

known in advance”.

 A program cannot be considered to be correct until it has

been validated with several sets of test data.

 The test data should be carefully selected so that each

part of the program is checked

